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CHAPTER 14

Rates of sea urchin bindin evolution
H. A. Lessios and Kirk S. Zigler

14.1 Introduction

Reproduction at the level of gametic interactions
involves activation and attraction of the sperm by
egg compounds, induction of the acrosome reaction
by the egg jelly, adhesion of the sperm to the egg,
and fusion of the two membranes in order to permit
the transmission of genetic material. All of these
interactions are mediated by molecules. Some of
these molecules, such as sea urchin speract, carry
out their functions indiscriminately, even if sperm
and egg belong to distantly related taxa (Vieira
and Miller 2006). Others function in a species-
specific or even genotype-specific manner. Selectiv-
ity between sperm gamete recognition molecules
and their egg receptors is particularly important
in organisms with external fertilization, because
in the absence of copulation, there are few other
opportunities for exercising mate choice. Conse-
quently, such molecules are exposed to the action
of selection more directly than molecules with the
same function in organisms with internal fertiliza-
tion. The DNA that codes for gamete recognition
molecules often, but not always, evolves rapidly,
displaying ratios of amino acid replacement to
synonymous substitutions larger than unity, a sig-
nature of positive (diversifying) selection (Swan-
son and Vacquier 2002a, b; Vacquier and Swanson
2011). As a rule, such positive selection is targeted
at certain regions of each molecule, presumably
involved in gamete selectivity, whereas the rest
of the sequence may evolve conservatively under
purifying selection, because it performs basic func-
tions essential for fertilization.

The first gamete recognition protein to be charac-
terized was sea urchin bindin (Vacquier and Moy
1977). Bindin DNA was subsequently amplified
and sequenced in Strongylocentrotus purpuratus by

Gao et al. (1986), and then studied with regards
to its intra- and interspecific polymorphism with
special attention given to detecting positive selec-
tion in its exons. These topics have been exten-
sively reviewed (Vacquier et al. 1995; Swanson and
Vacquier 2002a, b; Lessios 2007, 2011; Zigler 2008;
Palumbi 2009; Vacquier and Swanson 2011). In this
chapter, we explore what bindin sequences from
various sea urchin species reveal about the rate
of evolution of this molecule. Does bindin really
evolve in the fast lane?

14.2 Function and structure of bindin

Sea urchin bindin is a protein that coats the acro-
some process of sperm after the acrosomal reaction
occurs. It interacts with the egg bindin receptor,
EBR1, a glycoprotein (Kamei and Glabe 2003), to
attach the sperm to the egg’s vitelline layer and
to fuse membranes of the gametes. The full-length
precursor of bindin is cleaved after translation to
form the mature molecule. Among the sea urchin
species that have been studied to date, the length
of mature bindin ranges from 193–418 amino acids
(Zigler and Lessios 2003a). The single sea star in
which bindin has been characterized was found
to contain 793 amino acids (Patino et al. 2009). In
both sea urchins and sea stars, there is a single
intron separating two exons. Bindins of 11 species
of sea urchins from six orders contain a conserved
region in the second exon that codes for approxi-
mately 55 amino acids. Eighteen amino acids in this
conserved region, thought to be involved in mem-
brane fusion (Rocha et al. 2008), have not changed
since the extant orders of Echinoidea split from
each other, 250 million years ago (mya). Only one
amino acid in this region has changed between sea
stars and sea urchins in the 500 million years (my)

Rapidly Evolving Genes and Genetic Systems. First Edition. Edited by Rama S. Singh, Jianping Xu, and Rob J. Kulathinal.
© 2012 Oxford University Press. Published 2012 by Oxford University Press.
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that the two echinoderm classes have been evolv-
ing independently (Patino et al. 2009; Vacquier and
Swanson 2011). The reputation of bindin as a fast-
evolving protein is owed to two regions flanking
the conserved core, which in some genera have
accumulated many point mutations and insertions–
deletions. These are the regions that most likely
confer fertilization species-specificity (Lopez et al.
1993). The protein moiety of EBR1, which contains
3713–4595 amino acids, has only been sequenced in
two species of Strongylocentrotus (Kamei and Glabe
2003).

14.3 Rate of bindin evolution

Bindin has been sequenced in 11 genera of sea
urchins, but intrageneric variation, which permits
insights in the evolution of the molecule, has
been studied in only seven: Echinometra (Metz
and Palumbi 1996; McCartney and Lessios 2004),
Strongylocentrotus (Biermann 1998), Arbacia (Metz
et al. 1998a), Tripneustes (Zigler and Lessios 2003b),
Heliocidaris (Zigler et al. 2003), Lytechinus (Zigler
and Lessios 2004), and Paracentrotus (Calderon et al.
2009, 2010). Selection on bindin in all of these genera
has been studied as the ratio of amino acid replace-
ment to silent substitutions (˘ = dN/dS). By this cri-
terion, there is evidence of positive selection (˘ >1)
in Echinometra, Strongylocentrotus, Heliocidaris, and
Paracentrotus, but not in Arbacia, Tripneustes, and
Lytechinus. In addition to being an indication of
selection at the nucleotide level, the ˘ ratio would
also be a good measure of relative rates of adap-
tive evolution if silent sites evolved at the same
rate in all genera. This, however, is not the case
in bindin. Bindins with higher rates of nonsynony-
mous substitution also have higher rates of syn-
onymous substitution (Zigler and Lessios 2003b).
This correlation has also been observed in other
molecules such as alcohol dehydrogenase, ATP syn-
thetase, cyclophilin 1, or enolase (e.g. Dunn et al.
2001), and there are a number of hypotheses as to
its cause. While it is typically thought to arise from
some form of codon bias, codon usage in sea urchin
bindin is very equitable (Zigler and Lessios 2003a).
Thus, due to different codon biases, comparing ˘

ratios between bindins of different genera may lead
to erroneous conclusions regarding evolutionary

rates. To compare the absolute rate of evolution
between genera we need to determine the number
of nonsynonymous substitutions per nonsynony-
mous site that accumulate per unit time. Such a cal-
culation requires evidence of dates of divergence. In
this chapter, we will use the interspecific divergence
of cytochrome oxidase I (COI) as a proxy for the
time since speciation. Calibrated by the rise of the
Isthmus of Panama, approximately 3 mya, COI of
sea urchins diverges at an average rate of 3.6 % per
my (Lessios 2008).

Gauged by divergence in COI, average rates
of adaptive divergence of bindin within a genus
vary between 2.80 × 10−3 nonsynonymous substi-
tutions per nonsynonymous site per my (dNmy−1)
in Arbacia and 22.4 × 10−3 dNmy−1 in Strongylocen-
trotus (Table 14.1). As one might expect, genera
in which bindin evolves under positive selection,
show amino acid divergence rates almost four times
higher than genera in which bindin appears to be
under purifying selection: the average substitution
rate in Strongylocentrotus, Echinometra, and Helioci-
daris is 20.4 × 10−3 dNmy−1 whereas in Arbacia, Trip-
neustes, Lytechinus, Pseudoboletia, and Diadema, it is
5.96 × 10−3 dNmy−1. The question we would like
to answer is how these rates of adaptive evolution
compare with those of other proteins, both of those
that have been deemed to evolve rapidly in other
taxa, and those that carry out other functions in sea
urchins.

Fig. 14. 1 presents a comparison of the rates of
adaptive evolution of bindin to seven other classes
of reproductive proteins from five groups of organ-
isms. These are all proteins that are generally con-
sidered as fast-evolving. Because COI in different
taxa evolves at different rates, it is necessary to
apply taxon-specific calibrations to calculate diver-
gence rates. To estimate absolute rates of protein
evolution, we have assumed that COI evolves at
an average rate of 3.6% per my in sea urchins
(Lessios 2008), 2.7% per MY in gastropods (Lessios
2008), 2.3% per my in insects (Papadopoulou et al.
2010), and 1.6% per my in hominids (Kumar et al.
2005). Estimated in this manner, the evolutionary
rates of bindins in different genera of sea urchins,
even those found to be under selection, are slower
than that of reproductive proteins of gastropods
or insects. They are more comparable to those of
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Figure 14.1 Bindin evolution relative to known fast-evolving
reproductive proteins from other taxa. Non-synonymous substitutions per
non-synonymous site (dN) per million years, between congeneric species
(except in hominids, in which they are within the same family) in sea urchin
bindin (B) (data from references in Table 14.1), abalone lysin (HL) and 18
kD protein (H18) (data from Metz et al. 1998b), Tegula lysin (TL), and the
mature region of TMAP protein (TMAP) (data from Hellberg and Vacquier
1999; Hellberg et al. 2000), Drosophila Acp26Aa and Acp36DE (Acps)
(data from Tsaur and Wu 1997), hominid protamine 1 and 2 (P), ZP2, ZP3
and oviductal glycoprotein (ZP/OGP) (data from Wyckoff et al. 2000).

protamines, zona pellucida proteins, and oviductal
glycoprotein in hominids. Adjustments to the
assumed rate of COI evolution, or even an assump-
tion of a universal COI clock, would not change
this conclusion. Thus, by the standard of other fast-
evolving reproductive proteins from other inverte-
brates, bindin evolves only at moderate rates.

How do rates of bindin evolution compare to
rates of evolution among other sea urchin pro-
teins? To answer this question, we compared all
protein coding DNA sequences of Lytechinus var-
iegatus in GenBank to their closest matches in
the Strongylocentrotus purpuratus complete genome.
With the exception of S. purpuratus, more genes
have been sequenced from Lytechinus variegatus
than any other species of sea urchin. Lytechinus
and Strongylocentrotus diverged approximately 60
mya. Sequences were available for 90 L. variegatus
genes. The protein sequence of each gene was com-
pared between the two species via protein-protein
BLAST to GenBank’s ‘non-redundant (nr) protein
sequences’ database. The closest match to a S. pur-
puratus protein was noted, and the two protein
sequences were aligned using Clustal in MEGA
(v. 4.0). We then used MEGA to calculate the p-
distance between the aligned protein sequences.
We identified matches for 85 of the 90 Lytechinus
genes. The five genes that did not have a match

may be: (1) missing from the annotated Strongy-
locentrotus genome; (2) lost in the Strongylocentro-
tus lineage; or (3) mis-annotated in their original
Lytechinus entry. The set of genes that we compared
contained proteins with various functions, includ-
ing many involved in reproduction, and also in
development, cytoskeleton formation, cell attach-
ment, and stress responses. After ranking the diver-
gences of the 85 proteins, that of bindin was the
sixth largest, with a p-distance of 0.326 for the full-
length molecule and 0.314 for the mature portion.
Of the five proteins with divergence values higher
than bindin, vitellogenin and SFE-1 also carry out
functions related to reproduction, whereas the other
three were involved in development. Considering
the inevitable bias of proteins available for compar-
ison, the conclusion from this comparison is that
bindin evolves at moderately fast rates in relation
to other sea urchin proteins.

14.4 Possible reasons for different
evolutionary rates in bindin

Why does bindin in four sea urchin genera evolve
more rapidly under strong positive selection, than
in three other genera in which it is subject to puri-
fying selection? In the absence of data regarding
variation in its egg receptor, the answer can only be
speculative. Possible reasons for this lack of pattern
have been thoroughly reviewed (Lessios 2007, 2011;
Zigler 2008; Palumbi 2009). Here we present a sum-
mary of the hypotheses that have been proposed
so far.

One possibility is that positive selection of
bindin arises from the need for species recogni-
tion when two closely related species are in danger
of hybridizing with each other. We will call this
the ‘reinforcement hypothesis.’ This name does not
imply that speciation by reinforcement has actually
taken place, but rather that bindin alleles resem-
bling those of a sympatric species—and thus allow-
ing gamete wastage in inferior hybrids—have been
selected against. A broad-brush picture of compar-
isons between genera is consistent with this hypoth-
esis. When bindin rates of divergence of species
that are entirely allopatric with respect to congeners
are compared to those of species that may have a
higher probability of hybridization, those of the for-
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mer are clustered around lower values than those of
the latter (Fig. 14.2). Genera with many sympatric
species, such as Strongylocentrotus, and Echinometra
tend to have the highest rates of interspecific bindin
divergence. Not all the data, however, are consis-
tent with the reinforcement hypothesis. Contrary to
what is expected from selection for species recog-
nition, bindin is polymorphic and shows the signa-
ture of positive selection not just between species
but also between alleles of the same species (Metz
and Palumbi 1996; Lessios 2007, 2011). A pattern
of character displacement is present in one species
of Pacific Echinometra (Geyer and Palumbi 2003) in
partial geographic overlap with its sister species
but not in an Atlantic species of the same genus
that also needs to contend with the challenge of a
sister species existing over part of its range (Geyer
and Lessios 2009). Given the present evidence, the
hypothesis that reinforcement in sympatry acceler-
ates bindin divergence is as likely as the hypothe-
sis that divergence in bindin, due to other causes,
allows for sympatric coexistence.

Another possibility for the differences in rates
of bindin evolution could be that they are cor-
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Figure 14.2 Comparison of interspecific rates of bindin divergence
between genera. Amino acid replacement substitutions (dN) per
replacement site in bindin divided by Kimura-two-parameter distance in
cytochrome oxidase I (COI K2P) in allopatric and sympatric species of eight
genera of sea urchins. A species is considered as ‘allopatric’ if its range
does not overlap with that of another member of the same genus. Genera
in which bindin has been shown to be under selection are marked in the
legend with S.

related to the relative age of species in different
sea urchin genera. If, as Civetta and Singh (1998)
have suggested, episodes of divergence in repro-
ductive molecules are concentrated at the time
of speciation, and if selection on these molecules
is subsequently relaxed, younger species would
show higher rates of bindin differentiation than
older ones. This hypothesis is not supported by
the data. Sea urchins tend to conform to ‘Jordan’s
rule’ (Jordan 1905). Young sister species tend to
be distributed on either side of a geographic bar-
rier, and only older species become sympatric with
the passage of time (Lessios 2010). Thus, allopatric
species are, in general, younger than sympatric
ones, and if bindin divergence were accelerated
during speciation then slowed down, they should
show more differences in this molecule per unit
time than sympatric ones. The opposite is true
(Fig. 14.2).

The most credible hypothesis to date for differ-
ences in the rates of bindin evolution is that they
are caused by differences in the intensity of sex-
ual selection and sexual conflict. Using variation in
bindin genotypes of females as a proxy for varia-
tion in the bindin receptor (with which bindin is
expected to show linkage disequilibrium), Palumbi
(1999) has found that sexual selection exists in Echi-
nometra mathaei. Eggs are fertilized at higher rates
by sperm carrying the same bindin allele. Using the
same proxy, Levitan and Farrell (2006) and Levi-
tan and Stapper (2010) showed in Strongylocentrotus
franciscanus and S. purpuratus that sperm density
and the danger of polyspermy establish different
selective regimes for various bindin alleles. At low
sperm densities, most offspring are produced by
the union of sperm and egg possessing bindin
alleles that are most common in the population.
At high sperm densities, rare alleles leave behind
the most offspring, because common alleles, caus-
ing fast fertilization, result in polyspermic zygotes,
which fail to develop. Thus, there is always selec-
tion on males to effect fast fertilization, but females
in high sperm densities benefit from having alle-
les that retard fertilization: a typical sexual conflict
situation. Depending on ecological conditions, sex-
ual conflict can occur in some populations but not
others, thus resulting in different rates of bindin
evolution.
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14.5 Conclusions and future prospects

In comparison to other invertebrate reproductive
proteins, bindin evolves moderately rapidly in
some genera and slowly in others. Selective reasons
for the differences that cause these dissimilarities in
rates are still the subject of speculation, but they
may well be related to fertilization environments
and intraspecific processes. Interspecific processes,
such as reinforcement, can also not be ruled out.
There may well be no universal explanation for the
presence or absence of positive selection in different
sea urchin taxa. Gametic proteins are often brought
up as examples of rapid evolution. Fast evolution is
certainly true for each of these proteins in the partic-
ular genus in which they have been studied. How-
ever, in a great many of the documented cases of
fast molecular evolution, the evidence comes only
from a small fraction of taxa. Data on sea urchin
bindin, though far from covering the entire echinoid
class, derive from multiple genera. This broader
taxonomic coverage alone may explain why more
diversity in the mode of evolution of this molecule
has been documented than has been found in other
invertebrate reproductive proteins.

Future laboratory studies linking the structure
of different bindin alleles with the specificity of
fertilization would be of great benefit in under-
standing the evolution of this molecule. We already
know which amino acids evolve under selection,
but we will need to determine the functional rea-
sons for such selection. Additional understanding
of the sources of natural selection on this molecule
and the rate of its evolution would come from com-
parative studies that link fertilization ecology in
nature with the success of particular bindin alle-
les. Simply characterizing species as sympatric or
allopatric on the basis of their geographic distri-
bution is not adequate for determining the role
of reinforcement or other interspecific processes in
bindin evolution. Ultimately, interest in the evolu-
tion of bindin and similar molecules stems from
our desire to understand the process of speciation
and the role of sexual selection in the evolution
of reproductive isolation. In that respect, assessing
the importance of bindin as a reproductive isolation
barrier between species relies on studies that are
not aimed directly at this molecule alone. Whether

bindin is involved in speciation depends not just
on the species-specificity of its interactions with its
receptor but on the probability that gametes of two
closely related sea urchin species will encounter
each other in nature. Even when gametic interac-
tions are, in fact, species-specific, it is still neces-
sary to determine whether bindin or some other
molecule, acting earlier in the sequence of fertiliza-
tion, is responsible. Thus, information on habitat
separation, reproductive timing, and pre-spawning
chemical communication as well as on the role of
other reproductive molecules is important in under-
standing whether intra- or interspecific interactions
mold the evolution of the bindin. Most of all, we
will need to link variation of bindin to variation
in its egg receptor. The study of EBR1 has been
retarded by its enormous size. Recent advances
in techniques for massive DNA sequencing have
made it practical to gather data on individual vari-
ation in large stretches of genetic material, and will
no doubt soon be applied to this problem.

Acknowledgments

We thank Laura Geyer and Santosh Jagadeeshan for
comments on the manuscript.

References

Biermann, C.H. (1998) The molecular evolution of sperm
bindin in six species of sea urchins (Echinoida: Strongy-
locentrotidae). Mol Biol Evol 15: 1761–71.

Calderon, I., Turon, X., and Lessios, H.A. (2009) Character-
ization of the sperm molecule bindin in the sea urchin
genus Paracentrotus. J Mol Evol 68: 366–76.

Calderon, I., Ventura, C.R.R., Turon, X., and Lessios,
H.A. (2010) Genetic divergence and assortative mating
between colour morphs of the sea urchin Paracentrotus
gaimardi. Mol Ecol 19: 484–93.

Civetta, A. and Singh, R.S. (1998) Sex-related genes, direc-
tional sexual selection, and speciation. Mol Biol Evol 15:
901–9.

Dunn, K.A., Bielawski, J.P., and Yang, Z. (2001) Substitu-
tion rates in Drosophila nuclear genes: implications for
translational selection. Genetics 157: 295–305.

Gao, B., Klein, L.E., Britten, R.J., and Davidson, E.H. (1986)
Sequence of mRNA coding for bindin, a species-specific
sea urchin sperm protein required for fertilization. Proc
Natl Acad Sci U S A 83: 8634–8.



OUP CORRECTED PROOF – FINAL, 24/5/2012, SPi

142 RAPIDLY EVOLVING GENES AND GENETIC SYSTEMS

Geyer, L.B. and Palumbi, S.R. (2003) Reproductive charac-
ter displacement and the genetics of gamete recognition
in tropical sea urchins. Evolution 57, 1049–60.

Geyer, L.B. and Lessios, H.A. (2009) Lack of character dis-
placement in the male recognition molecule, bindin, in
Altantic sea urchins of the genus Echinometra. Mol Biol
Evol 26: 2135–46.

Hellberg, M.E. and Vacquier, V,D. (1999) Rapid evolution
of fertilization selectivity and lysin cDNA sequences in
teguline gastropods. Mol Biol Evol 16: 839–48.

Hellberg, M.E., Moy, G.W., and Vacquier, V.D. (2000) Pos-
itive selection and propeptide repeats promote rapid
interspecific divergence of a gastropod sperm protein.
Mol Biol Evol 17: 458–66.

Jordan, D. S. (1905) The origin of species through isolation.
Science 22: 545–62.

Kamei, N. and Glabe, C.G. (2003) The species-specific egg
receptor for sea urchin sperm adhesion is EBR1, a novel
ADAMTS protein. Genes Dev 17: 2502–7.

Kumar, S., Filipski, A., Swarna, V., Walker, A., and Hedges,
S.B. (2005) Placing confidence limits on the molecular
age of the human-chimpanzee divergence. Proc Natl
Acad Sci U S A 102: 18842–7.

Lessios, H.A. (2007) Reproductive isolation between
species of sea urchins. Bull Mar Sci 81: 191–208.

Lessios, H.A. (2008) The Great American Schism: Diver-
gence of marine organisms after the rise of the Cen-
tral American Isthmus. Annu Rev Ecol Evol Systema 39:
63–91.

Lessios, H.A. (2010) Speciation in sea urchins. In L.G. Har-
ris, S.A. Böttger, C.W. Walker, and M.P. Lesser (Eds)
Echinoderms: Durham. Proceedings of the 12th Echinoderm
Conference, Durham, New Hampshire, pp. 91–101. Lon-
don: CRC Press.

Lessios, H.A. (2011) Speciation genes in free-spawning
marine invertebrates. Integr Comp Biol 51(3): 456–65.

Levitan, D.R. and Ferrell, D.L. (2006) Selection on gamete
recognition proteins depends on sex, density, and geno-
type frequency. Science 312: 267–9.

Levitan, D.R. and Stapper, A.P. (2010) Simultaneous pos-
itive and negative frequency-dependent selection on
sperm bindin, a gamete recognition protein in the
sea urchin Strongylocentrotus purpuratus. Evolution 64:
785–97.

Lopez, A., Miraglia, S.J., and Glabe, C.G. (1993) Struc-
ture/function analysis of the sea-urchin sperm adhesive
protein bindin. Dev Biol 156: 24–33.

McCartney, M.A. and Lessios, H.A. (2004) Adaptive evo-
lution of sperm bindin tracks egg incompatibility in
neotropical sea urchins of the genus Echinometra. Mol
Biol Evol 21: 732–45.

Metz, E.C. and Palumbi, S.R. (1996) Positive selection and
sequence rearrangements generate extensive polymor-
phism in the gamete recognition protein bindin. Mol Biol
Evol 13: 397–406.

Metz, E.C., Gomez-Gutierrez, G., and Vacquier, V.D.
(1998a) Mitochondrial DNA and bindin gene sequence
evolution among allopatric species of the sea urchin
genus Arbacia. Mol Biol Evol 15: 185–95.

Metz, E.C., Robles-Sikisaka, R., and Vacquier, V.D. (1998b)
Nonsynonymous substitution in abalone sperm fertil-
ization genes exceeds substitution in introns and mito-
chondrial DNA. Proc Natl Acad Sci U S A 95: 10676–81.

Palumbi, S.R. (1999) All males are not created equal: fer-
tility differences depend on gamete recognition poly-
morphisms in sea urchins. Proc Natl Acad Sci U S A 96:
12632–7.

Palumbi, S.R. (2009) Speciation and the evolution of
gamete recognition genes: Pattern and process. Heredity
102: 66–76.

Papadopoulou, A., Anastasiou, I., and Vogler, A.P. (2010)
Revisiting the insect mitochondrial molecular clock:
The mid-Aegean Trench calibration. Mol Biol Evol 27:
1659–72.

Patino, S., Aagaard, J.E., MacCoss, M.J., Swanson, W.J.,
and Hart, M.W. (2009) Bindin from a sea star. Evol Dev
11: 376–81.

Rocha, S., Lucio, M., Pereira, M.C., Reis, S., and Brezesin-
ski, G. (2008) The conformation of fusogenic B18 pep-
tide in surfactant solutions. J Peptide Sci 14: 436–41.

Swanson, W.J. and Vacquier, V.D. (2002a) The rapid evolu-
tion of reproductive proteins. Nat Rev Genet 3: 137–44.

Swanson, W.J. and Vacquier, V.D. (2002b) Reproductive
protein evolution. Annu Rev Ecol Systemat 33: 161–79.

Tsaur, S.-C. and Wu, C.-I. (1997) Positive selection and
the molecular evolution of a gene of male reproduction,
Acp26Aa of Drosophila. Mol Biol Evol 14: 544–9.

Vacquier, V.D. and Moy, G.W. (1977) Isolation of bindin:
The protein responsible for adhesion of sperm to sea
urchin eggs. Proc Natl Acad Sci U S A 74: 2456–60.

Vacquier, V.D. and Swanson, W.J. (2011) Selection in
the rapid evolution of gamete recognition proteins in
marine invertebrates. Cold Spring Harb Perspect Biol 3:
a002931.

Vacquier, V.D., Swanson, W.J., and Hellberg, M.E. (1995)
What have we learned about sea urchin sperm bindin?
Dev Growth Differ 37: 1–10.

Vieira, A. and Miller, D.J. (2006) Gamete interaction: Is it
species-specific? Mol Reprod Dev 73: 1422–9.

Wyckoff, G.J., Wang, W., and Wu, C.I. (2000) Rapid evolu-
tion of male reproductive genes in the descent of man.
Nature 403: 304–8.



OUP CORRECTED PROOF – FINAL, 24/5/2012, SPi

RATES OF SEA URCHIN BINDIN EVOLUTION 143

Zigler, K.S. (2008) The evolution of sea urchin sperm
bindin. Int J Dev Biol 52: 791–6.

Zigler, K.S. and Lessios, H.A. (2003a) 250 million years of
bindin evolution. Biol Bull 205: 8–15.

Zigler, K.S. and Lessios, H.A. (2003b) Evolution of bindin
in the pantropical sea urchin Tripneustes: Compar-
isons to bindin of other genera. Mol Biol Evol 20:
220–31.

Zigler, K.S. and Lessios, H.A. (2004) Speciation on the
coasts of the new world: Phylogeography and the evo-

lution of bindin in the sea urchin genus Lytechinus.
Evolution 58: 1225–41.

Zigler, K.S., Raff, E.C., Popodi, E., Raff, R.A., and Lessios,
H.A. (2003) Adaptive evolution of bindin in the genus
Heliocidaris is correlated with the shift to direct develop-
ment. Evolution 57: 2293–302.

Zigler, K.S., Byrne, M., Raff, E.C., Lessios, H.A., and Raff,
R.A. (in press) Natural hybridization in the sea urchin
genus Pseudoboletia between species without apparent
barriers to gamete recognition. Evolution.


	Singh prelims.pdf
	Singh chapter 14.pdf

